A Heuristic Method for Certifying Isolated Zeros of Polynomial Systems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular Zeros of Polynomial Systems

Singular zeros of systems of polynomial equations constitute a bottleneck when it comes to computing, since several methods relying on the regularity of the Jacobian matrix of the system do not apply when the latter has a non-trivial kernel. Therefore they require special treatment. The algebraic information regarding an isolated singularity can be captured by a finite, local basis of different...

متن کامل

alphaCertified: certifying solutions to polynomial systems

Smale’s α-theory uses estimates related to the convergence of Newton’s method to certify that Newton iterations will converge quadratically to solutions to a square polynomial system. The program alphaCertified implements algorithms based on α-theory to certify solutions of polynomial systems using both exact rational arithmetic and arbitrary precision floating point arithmetic. It also impleme...

متن کامل

Inequalities for the polar derivative of a polynomial with $S$-fold zeros at the origin

‎Let $p(z)$ be a polynomial of degree $n$ and for a complex number $alpha$‎, ‎let $D_{alpha}p(z)=np(z)+(alpha-z)p'(z)$ denote the polar derivative of the polynomial p(z) with respect to $alpha$‎. ‎Dewan et al proved‎ ‎that if $p(z)$ has all its zeros in $|z| leq k, (kleq‎ ‎1),$ with $s$-fold zeros at the origin then for every‎ ‎$alphainmathbb{C}$ with $|alpha|geq k$‎, ‎begin{align*}‎ ‎max_{|z|=...

متن کامل

A Globally Convergent Parallel Algorithm for Zeros of Polynomial Systems

POLYNOMIAL systems of equations frequently arise in solid modelling, robotics, computer vision, chemistry, chemical engineering, and mechanical engineering. Locally convergent iterative methods such as quasi-Newton methods may diverge or fail to find all meaningful solutions of a polynomial system. This paper proposes a parallel homotopy algorithm for polynomial systems of equations that is gua...

متن کامل

Newton's method with deflation for isolated singularities of polynomial systems

We present a modification of Newton’s method to restore quadratic convergence for isolated singular solutions of polynomial systems. Our method is symbolic-numeric: we produce a new polynomial system which has the original multiple solution as a regular root. We show that the number of deflation stages is bounded by the multiplicity of the isolated root. Our implementation performs well on a la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2018

ISSN: 2227-7390

DOI: 10.3390/math6090166